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CHOICE OF A MATHEMATICAL MODEL FOR AN UNSTEADY HEAT TRANSFER
PROCESS WITH A SINGLE-PHASE INCOMPRESSIBLE HEAT TRANSFER AGENT

B. N. Seliverstov

Inzhenerno-Fizicheskii Zhurnal, Vol. 11, No. 4, pp. 545—551, 1966

UDC 5386.2.01

An examination is made of the possible etror introduced by neglecting
the nature of the radial temperature distribution when calculating the
temperature field in a cylindrical heating shell.

In mathematical modeling of unsteady heat transfer
in a single-phase incompressible section, it is im-
portant to know the possible errors introduced by a
simplified examination of the process of accumulation
of heat in the metal of the heating element. In the ma-
jority of cases, when examining the dynamic charac-
teristics of this kind of heat-exchange equipment, we
neglect the effect of the radial temperature distribu~
tion in the metal of the heating element [1-3]. For
fixed relationships of the technical thermal parameters
and the geometric dimensions of the heater, this exam-
ination may give an appreciable dynamic error, espe-
cially in the high~frequency region. On the other hand,
high accuracy of calculation is not required in a num-
ber of cases, and complication of the mathematical
model is not necessary.

In this paper an examination is made, on the exam-
ple of a hollow cylindrical heating shell, of the expe-
diency of using the exact and the approximate solutions,
and an estimate is made of the possible error.

We shall examine the derivation of the exact trans-
fer function for the section under consideration (ne-
glecting heat conduction of the metal and of the heat
transfer agent in the axial direction, and heat conduc-
tion of the agent in the radial direction), which will
allow us to make a valid determination of the condi-
tions when it is possible to simplify the mathematical
model by replacing the heat conduction equation by a heat
balance equation for the metal of the heating element.

It is known that the dynamic characteristics of a
single-phase section, a heating shell of finite length
! with a finite value of the ratio of outer to inner
diameter, R =de/di, washed inside by an incompres-
sible heat transfer agent, are determined by two char-
acteristic times: the time for a particle of the agent
to traverse the circuit of the section, 75, and a time
constant, Ty, which describes the intensity of heat
transfer from the surface of the element to the agent.

For a single~phase incompressible fluid

_lydy

=70 g &

is determined in an elementary way from the relations
describing the equilibrium state of the process and
appearing in the coefficients of the heat balance equa-
tion for the heat transfer agent

, T Of Ge ot ;
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with the boundary condition at x = 0

Equation (2) was obtained rigorously, if it is con-
sidered that the velocity of the agent is the same over
the cross section of the channel. In other words, this
is a definite approximation, just like the introduction
of the heat transfer coefficient in the unsteady regime.
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Graphical interpretation of the equation
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for determining tlie eigenvalues p, for a hollow

cylindrical geometry with various values of the

geometric parameter R: a) R = 1.2; b) L.5;
¢)2.5;d) 3.0;1) yy = —u/Bi.

In turn, 7 is characterized by the coefficient of
heat transfer between the surface of the heating ele-
ment and the medium being heated, and also by the
heat conduction properties of the metal of the heating
element, and is formally defined as the time constant
of the exponential approximation to the timewise vari-
ation of the temperature of the internal surface of the
heating element, when there is a discontinuous change
in the power of the internal heat sources.

For a constant value of the thermal conductivity A
we have the equation of heat conduction with internal
heat sources, written in dimensionless form,

dv a0

— =FoAv+g— — (3
at dt

with the boundary and initial conditions

L9Y 4y, =0,
B an
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and d; is the characteristic geometric dimension for
the section of the heater shell.
We shall seek a solution of Eq. (3) in the form:

Y= Evn ()X, (), (5)

where Xp{r) is an eigenfunction of Eq. (3) with bound-
ary conditions (4) corresponding to the n-th eigenvalue
of the parameter uy, and is determined from the equa-
tions

AX(r) + p2X () =0, (3%
1 8X(n) _
Bi a + ( )ldl - 7
a X(r) _
oN o, 0. (44

and r = r/d; is a dimensionless coordinate.

The solutions of Eq. (5) corresponding to different
eigenvalues are mutually orthogonal in the range 1 <
=r =R with weight p(r) = r:

59(’)‘ m Y)Xn(l‘)drzﬂ when m;’:n,

and the integration is performed over the region in
which the solution is sought.

We shall write the expression ¢ — ?a_@- in the form
T

of an expansion in terms of the functions X, (r):

q—§§=(q——)8‘3 L0, (@

where EB" X, (r) =1 is the expansion of a function
n=0

identically equal to 1 in the functions X, (r), while

_fpox,ar

fonx2()ar

n

Substituting Eqs. (6) and (5) into Eq. (3}, we obtain

A _( 99\,
2L tFomm—(y 01:)

n=:0

n‘l[xn(r)=0'
I

This equality, like the initial condition v|;= = 0, must
be satisfied identically for any r. For this it is neces-
sary that each function vn satisfy the equation

a0

= T AV, = Bn( q— -_)’ vn|1: — == 0, (7
Jt

= 2
where a, = Fo uj.
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Solving Eq. (7), we find

: 30 y , ,
v,,:anH(q—-gt—) exp[-an(r—t)}!dt- (8)
0

)

Thus, if v, has the form (8), then Eq. (5), when it
satisfies Eq. (3) and the initial condition, will also
satisfy the boundary conditions, since all the Xp(r)
satisfy them.

Therefore the solution of Eq. (8) is

v;ann j‘{(q——-— exp[—an(r~r’)]}dt’. 9)

Examining Eq. (9) on the inner surface of the shell,
we may write

£
il

o
=3

X exp l:——an (r—t’)]} av, (10)

where
4,=8B,X, (r),di .

Expression (10) may be regarded as an equation
that relates the temperature T = v + ® of the shell
to that of the heat transfer agent ©.

We write Eq. (2) in the dimensionless form

1 00 | 98

o e T TR (ay

with the initial and boundary conditions
@lr=0 = 0:
O)x=0 = Oy, (12)

where k = @ p/ /GC. Eliminating the variable v|g; from
Egs. (10) and (11), we obtain the following equation
relating the unknown ® with the initial and boundary
conditions (12):
© A

a0 1 00 08

o L 27 o kA, =

Ox + o 9t 2 ’ d{(q 61)

n=0 §

X exp[—a, (t—‘t')]} dt'. (13)

Following a Laplace transformation of Eq. (13) with
respect to the variable 7 and integration with respect
to the space coordinate x from 0 to 1, we obtain the
transfer functions for the temperature of the agent at
the outlet from the heated section for perturbations of
the power of the internal heat sources and the inside

emperature:

£ Y (4418 + a,))
W( )BOUT. = n= P X

sp+k20ww+mq

n=>0
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x{l_exp[—s(mkv A (14

\ n‘:: STa,, !
W(©S); 5 =expl—8/[1+ ki A (15)

Sout' ©in ' S+ta, )t

n={
The terms
exp [-— S},
3 A, S
expl —p N0 16)
p[ %(;S-J—a,j (

in (15) for the dimensionless time to the scale 5, de-
termine in the Laplace transformation the time for a
particle of the agent to traverse the section, and the
distortion of the shape of the perturbing input signal
by the accumulation of heat in the walls of the heating
element, respectively.

1f we write the expression for the series appearing
in the exponent of Eq. (16) in the form

/S,[ﬁ"—s (1 S+1”,
”_:)—all a”

(1n

since the relations

A, _ 14 and 1 N 1;)
a, o a, W,

hold, it is not difficult to show that for large values of
n the coefficients of S examined above will tend to
quantities of a higher order of smallness than uy.

It may be seen from the figure (p. 305) that with in-
crease of R (corresponding to increase in the wall thick-
ness of the heating element), the period of the function
y, which determines the values of the characteristic
roots of the system (3%), (4*) for the value of the Bi num-
ber under consideration, decreases. In other words,
with increase of R, the value of the first and of all the
successive roots pg, fiy, Hys - - -5 pp for Ry will be less
than the values of the corresponding roots for Ryj.,
where Rj > Rij~y-

If we consider that for the required accuracy of the
dynamic calculations it is sufficient to restrict our-
selves to the value of the root u*, it is then evident
that the number of terms of the series (17) will in-
crease with increase of R.

Therefore, for values of R close to unity, we may
restrict ourselves, with sufficient acduracy, to the
first term of series (17), which corresponds physically
to neglecting the distribution of the temperature of the
metal of the heating shell over the radius, or, ex-
pressed analytically, the heat conduction equation is
replaced by a heat balance equation of the form
n(d, —dy) Ot

4 dt -’

g(x)—a plly—1) = Cpyp (18)

In this simplified representation, the transcen-
dental component of the transfer functions (14) and (15)
takes the form:

exp{‘ [rzs +r‘s/ (—%S-{—l )”

(19
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where

Cfd’ — @)y =
= —

ap 4’

apl
=
1t is a straightforward matter to verify that the solu-
tion of this simplified problem, i.e., the simultaneous
solution of Eqs. (2) and (18), is a special case of the
general problem when R — 1.

In fact, by representing the expression for the first
term of the series (17) in the real time scale

kT2A0 /( To
s ——s+1),

a, a,

(20)

it may be shown that the coefficients of S in Eq. (19)
and (20) are identically equal when Ag = 1, which cor-
responds to R = 1 with the condition

iBan(r)—_— 1.
=0

In a number of cases, when examining this type of
unsteady problem, the heat balance Eq. (18) may be
used, allowing for the thermal resistance of the shell
metal in the heat transfer coefficient

. 11 de
af =1 — 4+ -2 InR ).
/ ( a * 25 )

Then the degree of approximation to the exact solu-
tion (it may be determined from the values of Egs. (19)
and (16) when S —=) will be given by the expression

1 —exp (b, —Fk),
where
Ry = a* pl/GC,

on the other hand, the value
li -
mslaezp [ 3 g}

allows us to determine the number of terms of the
series which will provide the given accuracy of solu-
tion in this case.

In approximate investigations for heating elements
with large values of R, it is expedient to represent the
transcendental component in the form

A, S
n =exp[—Fk
S—lra,,] pl— &l

@ 1
I (kA a) S+1 "

n=0

(21)

where

1

(0<i< o)
(kAya)S + 1

is the approximation expression

[ kAS
exp | —— .
S+a J

In practical calculations it is necessary to limit the
series, in which case the accuracy obtained is of the
order of the value of the coefficient of the last term
of Eq. (21).
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The theoretical premises associated with the choice
of mathematical models of heat-exchange equipment
have been subjected to experimental verification and
were applied in [4], which gives a theoretical and ex-
perimental determination of the dynamic characteris-
tics of a technical model of the Kurchatov Beloyarsk
atomic power station.

The points examined in this article permit the choice
of a rational mathematical model of heat-exchange
equipment with predetermined accuracy.

The technique described also extends to mathemati-
cal models of unheated parts such as connecting tubes,
separator and evaporator drums, and water-moderated
water-cooled reactor vessels.

NOTATION

¥s Ym are the specific weight of heat transfer agent
and metal, respectively; w dimensionless heat transfer
agent velocity; t, t;, are the temperature of heat trans-~
fer agent and metal, respectively; ¢ is the heat trans-
fer coefficient; G is the mass flow rate of heat transfer
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agent; p is the perimeter washed by heat transfer agent;
C, Cyy are the specific heat of heat transfer agent and
metal, respectively; dy, (x) are the specific energy
output referred to unit volume and unit length, respec-
tively; 8/0N is the derivative with respect to direction
of outward normal to surface; S is the Laplace trans-
formation constant,
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